II Vear - I Somostor	L	Т	Р	С
	4	0	0	3

ELECTRONIC DEVICES AND CIRCUITS

Objectives:

The main objectives of this course are:

- The basic concepts of semiconductor physics are to be reviewed.
- Study the physical phenomena such as conduction, transport mechanism and electrical characteristics of different diodes.
- The application of diodes as rectifiers with their operation and characteristics with and without filters are discussed.
- The principal of working and operation of Bipolar Junction Transistor and Field Effect Transistor and their characteristics are explained.
- The need of transistor biasing and its significance is explained. The quiescent point or operating point is explained.
- Small signal equivalent circuit analysis of BJT and FET transistor amplifiers in different configuration is explained.

Syllabus:

UNIT-I:Semi Conductor Physics : Insulators, Semi conductors, and Metals classification using energy band diagrams, mobility and conductivity, electrons and holes in intrinsic semi conductors, extrinsic semi conductors, drift and diffusion, charge densities in semiconductors, Hall effect, continuity equation, law of junction, Fermi Dirac function, Fermi level in intrinsic and extrinsic Semiconductors

UNIT- II: Junction Diode Characteristics : Open circuited p-n junction, Biased p-n junction, p-n junction diode, current components in PN junction Diode, diode equation, V-I Characteristics, temperature dependence on V-I characteristics, Diode resistance, Diode capacitance, energy band diagram of PN junction Diode.

Special Semiconductor Diodes: Zener Diode, Breakdown mechanisms, Zener diode applications, LED, Photo diode, Tunnel Diode, SCR, UJT. Construction, operation and characteristics of all the diodes are required to be considered.

UNIT- III: Rectifiers and Filters: Basic Rectifier setup, half wave rectifier, full wave rectifier, bridge rectifier, derivations of characteristics of rectifiers, rectifier circuits-operation, input and output waveforms, Filters, Inductor filter, Capacitor filter, comparison of various filter circuits in terms of ripple factors.

UNIT- IV: Transistor Characteristics:

BJT: Junction transistor, transistor current components, transistor equation, transistor configurations, transistor as an amplifier, characteristics of transistor in Common Base, Common Emitter and Common Collector configurations, Ebers-Moll model of a transistor, punch through/ reach through, Photo transistor, typical transistor junction voltage values.

FET: FET types, construction, operation, characteristics, parameters, MOSFET-types, construction, operation, characteristics, comparison between JFET and MOSFET.

UNIT- V: Transistor Biasing and Thermal Stabilization : Need for biasing, operating point, load line analysis, BJT biasing- methods, basic stability, fixed bias, collector to base bias, self bias, Stabilization against variations in V_{BE} , Ic, and β , Stability factors, (S, S['], S^{''}), Bias compensation, Thermal runaway, Thermal stability.

FET Biasing- methods and stabilization.

UNIT- VI: Small Signal Low Frequency Transistor Amplifier Models:

BJT: Two port network, Transistor hybrid model, determination of h-parameters, conversion of h-parameters, generalized analysis of transistor amplifier model using h-parameters, Analysis of CB, CE and CC amplifiers using exact and approximate analysis, Comparison of transistor amplifiers.

FET: Generalized analysis of small signal model, Analysis of CG, CS and CD amplifiers, comparison of FET amplifiers.

Text Books:

- 1. Electronic Devices and Circuits- J. Millman, C. Halkias, Tata Mc-Graw Hill, Second Edition.
- 2. Integrated Electronics- Jacob Millman, C. Halkies, C.D.Parikh, Tata Mc-Graw Hill, 2009.

References:

- 1. Electronic Devices and Circuits-K. Satya Prasad, VGS Book Links.
- 2. Electronic Devices and Circuits-Salivahanan, Kumar, Vallavaraj, Tata Mc-Graw Hill, Second Edition
- 3. Electronic Devices and Circuits Bell, Oxford

Outcomes:

At the end of this course the student can able to:

- Understand the basic concepts of semiconductor physics.
- Understand the formation of p-n junction and how it can be used as a p-n junction as diode in different modes of operation.
- Know the construction, working principle of rectifiers with and without filters with relevant expressions and necessary comparisons.
- Understand the construction, principle of operation of transistors, BJT and FET with their V-I characteristics in different configurations.
- Know the need of transistor biasing, various biasing techniques for BJT and FET and stabilization concepts with necessary expressions.
- Perform the analysis of small signal low frequency transistor amplifier circuits using BJT and FET in different configurations.

II Year - I Semester	L	Т	Р	С
	4	0	0	3

SWITCHING THEORY AND LOGIC DESIGN

UNIT – I: REVIEW OF NUMBER SYSTEMS & CODES:

- i) Representation of numbers of different radix, conversation from one radix to another radix, r-1's compliments and r's compliments of signed members, problem solving.
- ii) 4 bit codes, BCD, Excess-3, 2421, 84-2-1 9's compliment code etc.,
- iii) Logic operations and error detection & correction codes; Basic logic operations -NOT, OR, AND, Universal building blocks, EX-OR, EX-NOR - Gates, Standard SOP and POS, Forms, Gray code, error detection, error correction codes (parity checking, even parity, odd parity, Hamming code) NAND-NAND and NOR-NOR realizations.

UNIT – II: MINIMIZATION TECHNIQUES

Boolean theorems, principle of complementation & duality, De-morgan theorems, minimization of logic functions using Boolean theorems, minimization of switching functions using K-Map up to 6 variables, tabular minimization, problem solving (code-converters using K-Map etc..).

UNIT – III: COMBINATIONAL LOGIC CIRCUITS DESIGN

Design of Half adder, full adder, half subtractor, full subtractor, applications of full adders, 4-bit binary subtractor, adder-subtractor circuit, BCD adder circuit, Excess 3 adder circuit, look-a-head adder circuit, Design of decoder, demultiplexer, 7 segment decoder, higher order demultiplexing, encoder, multiplexer, higher order multiplexing, realization of Boolean functions using decoders and multiplexers, priority encoder, 4-bit digital comparator.

UNIT - IV: INTRODUCTION OF PLD's

PROM, PAL, PLA-Basics structures, realization of Boolean function with PLDs, programming tables of PLDs, merits & demerits of PROM, PAL, PLA comparison, realization of Boolean functions using PROM, PAL, PLA, programming tables of PROM, PAL, PLA.

UNIT - V: SEQUENTIAL CIRCUITS I

Classification of sequential circuits (synchronous and asynchronous); basic flip-flops, truth tables and excitation tables (nand RS latch, nor RS latch, RS flip-flop, JK flip-flop, T flip-flop, D flip-flop with reset and clear terminals). Conversion from one flip-flop to flip-flop. Design of ripple counters, design of synchronous counters, Johnson counter, ring counter. Design of registers - Buffer register, control buffer register, shift register, bi-directional shift register, universal shift register.

UNIT – VI: SEQUENTIAL CIRCUITS II

Finite state machine; Analysis of clocked sequential circuits, state diagrams, state tables, reduction of state tables and state assignment, design procedures. Realization of circuits using various flip-flops. Meelay to Moore conversion and vice-versa.

TEXT BOOKS:

- 1. Switching Theory and Logic Design by Hill and Peterson Mc-Graw Hill TMH edition.
- 2. Switching Theory and Logic Design by A. Anand Kumar
- 3. Digital Design by Mano PHI.

REFERENCE BOOKS:

- 1. Modern Digital Electronics by RP Jain, TMH
- 2. Fundamentals of Logic Design by Charles H. Roth Jr, Jaico Publishers
- 3. Micro electronics by Milliman MH edition.

II Year - I Semester	L	Т	Р	С	
	4	0	0	3	
	SIGNALS & SYSTEMS				

OBJECTIVES:

The main objectives of this course are given below:

- To introduce the terminology of signals and systems.
- To introduce Fourier tools through the analogy between vectors and signals.
- To introduce the concept of sampling and reconstruction of signals.
- To analyze the linear systems in time and frequency domains.
- To study z-transform as mathematical tool to analyze discrete-time signals and systems.

UNIT- I: INTRODUCTION: Definition of Signals and Systems, Classification of Signals, Classification of Systems, Operations on signals: time-shifting, time-scaling, amplitude-shifting, amplitude-scaling. Problems on classification and characteristics of Signals and Systems. Complex exponential and sinusoidal signals, Singularity functions and related functions: impulse function, step function signum function and ramp function. Analogy between vectors and signals, orthogonal signal space, Signal approximation using orthogonal functions, Mean square error, closed or complete set of orthogonal functions, Orthogonality in complex functions.

UNIT -- II: FOURIER SERIES AND FOURIER TRANSFORM:

Fourier series representation of continuous time periodic signals, properties of Fourier series, Dirichlet's conditions, Trigonometric Fourier series and Exponential Fourier series, Complex Fourier spectrum. Deriving Fourier transform from Fourier series, Fourier transform of arbitrary signal, Fourier transform of standard signals, Fourier transform of periodic signals, properties of Fourier transforms, Fourier transforms involving impulse function and Signum function. Introduction to Hilbert Transform.

UNIT –III: SAMPLING THEOREM – Graphical and analytical proof for Band Limited Signals, impulse sampling, Natural and Flat top Sampling, Reconstruction of signal from its samples, effect of under sampling – Aliasing, Introduction to Band Pass sampling.

UNIT-IV: ANALYSIS OF LINEAR SYSTEMS: Linear system, impulse response, Response of a linear system, Linear time invariant (LTI) system, Linear time variant (LTV) system, Concept of convolution in time domain and frequency domain, Graphical representation of convolution, Transfer function of a LTI system. Filter characteristics of linear systems. Distortion less transmission through a system, Signal bandwidth, system bandwidth, Ideal LPF, HPF and BPF characteristics, Causality and Poly-Wiener criterion for physical realization, relationship between bandwidth and rise time.

Cross-correlation and auto-correlation of functions, properties of correlation function, Energy density spectrum, Parseval's theorem, Power density spectrum, Relation between auto correlation function and energy/power spectral density function. Relation between convolution and correlation, Detection of periodic signals in the presence of noise by correlation, Extraction of signal from noise by filtering.

UNIT -V: LAPLACE TRANSFORMS : Review of Laplace transforms, Partial fraction expansion, Inverse Laplace transform, Concept of region of convergence (ROC) for Laplace transforms, constraints on ROC for various classes of signals, Properties of L.T's, Relation between L.T's, and F.T. of a signal. Laplace transform of certain signals using waveform synthesis.

UNIT -VI: Z-TRANSFORMS : Fundamental difference between continuous-time and discrete-time signals, discrete time signal representation using complex exponential and sinusoidal components, Periodicity of discrete time using complex exponential signal, Concept of Z- Transform of a discrete sequence. Distinction between Laplace, Fourier and Z transforms. Region of convergence in

Z-Transform, constraints on ROC for various classes of signals, Inverse Z-transform, properties of Z-transforms.

TEXT BOOKS:

- 1. Signals, Systems & Communications B.P. Lathi, BS Publications, 2003.
- 2. Signals and Systems A.V. Oppenheim, A.S. Willsky and S.H. Nawab, PHI, 2nd Edn.
- 3. Signals & Systems- Narayan Iyer and K Satya Prasad, Cenage Pub.

REFERENCE BOOKS:

- 1. Signals & Systems Simon Haykin and Van Veen, Wiley, 2nd Edition.
- 2. Principles of Linear Systems and Signals BP Lathi, Oxford University Press, 2015
- 3. Signals and Systems K Raja Rajeswari, B VisweswaraRao, PHI, 2009
- 4. Fundamentals of Signals and Systems- Michel J. Robert, MGH International Edition, 2008.
- 5. Signals and Systems T K Rawat, Oxford University press, 2011

OUTCOMES:

At the end of this course the student will able to:

- Characterize the signals and systems and principles of vector spaces, Concept of orthgonality.
- Analyze the continuous-time signals and continuous-time systems using Fourier series, Fourier transform and Laplace transform.
- Apply sampling theorem to convert continuous-time signals to discrete-time signal and reconstruct back.
- Understand the relationships among the various representations of LTI systems
- Understand the Concepts of convolution, correlation, Energy and Power density spectrum and their relationships.
- Apply z-transform to analyze discrete-time signals and systems.

II Year - I Semester	L	Т	Р	С
	4	0	0	3
NETWORK ANALYSIS				

UNIT – I

Introduction to Electrical Circuits : Network elements classification, Electric charge and current, Electric energy and potential, Resistance parameter – series and parallel combination, Inductance parameter – series and parallel combination. Energy sources: Ideal, Non-ideal, Independent and dependent sources, Source transformation, Kirchoff's laws, Mesh analysis and Nodal analysis problem solving with resistances only including dependent sources also. (Text Books: 1,2,3, Reference Books: 3)

A.C Fundamentals and Network Topology: Definitions of terms associated with periodic functions: Time period, Angular velocity and frequency, RMS value, Average value, Form factor and peak factor- problem solving, Phase angle, Phasor representation, Addition and subtraction of phasors, mathematical representation of sinusoidal quantities, explanation with relevant theory, problem solving. Principal of Duality with examples.

Network Topology: Definitions of branch, node, tree, planar, non-planar graph, incidence matrix, basic tie set schedule, basic cut set schedule. (Text Books: 2,3, Reference Books: 3)

UNIT – II

Steady State Analysis of A.C Circuits : Response to sinusoidal excitation - pure resistance, pure inductance, pure capacitance, impedance concept, phase angle, series R-L, R-C, R-L-C circuits problem solving. Complex impedance and phasor notation for R-L, R-C, R-L-C problem solving using mesh and nodal analysis, Star-Delta conversion, problem solving. (Text Books: 1,2, Reference Books: 3)

UNIT – III

Coupled Circuits : Coupled Circuits: Self inductance, Mutual inductance, Coefficient of coupling, analysis of coupled circuits, Natural current, Dot rule of coupled circuits, Conductively coupled equivalent circuits- problem solving.

Resonance: Introduction, Definition of Q, Series resonance, Bandwidth of series resonance, Parallel resonance, Condition for maximum impedance, current in anti resonance, Bandwidth of parallel resonance, general case-resistance present in both branches, anti resonance at all frequencies. (Text Books:2,3, Reference Books: 3)

UNIT – IV

Network Theorems: Thevinin's, Norton's, Milliman's, Reciprocity, Compensation, Substitution, Superposition, Max Power Transfer, Tellegens- problem solving using dependent sources also. (Text Books: 1,2,3, Reference Books: 2)

UNIT – V

Two-port networks : Relationship of two port networks, Z-parameters, Y-parameters, Transmission line parameters, h-parameters, Inverse h-parameters, Inverse Transmission line parameters, Relationship between parameter sets, Parallel connection of two port networks, Cascading of two port networks, series connection of two port networks, problem solving including dependent sources also. (Text Books: 1,2, Reference Books: 1,3)

UNIT – VI

Transients : First order differential equations, Definition of time constants, R-L circuit, R-C circuit with DC excitation, Evaluating initial conditions procedure, second order differential equations, homogeneous, non-homogeneous, problem solving using R-L-C elements with DC excitation and AC excitation, Response as related to s-plane rotation of roots. Solutions using Laplace transform method. (Text Books: 1,2,3, Reference Books: 1,3)

TEXT BOOKS:

- 1. Network Analysis ME Van Valkenburg, Prentice Hall of India, 3rd Edition, 2000.
- 2. Network Analysis by K.Satya Prasad and S Sivanagaraju, Cengage Learning
- 3. Electric Circuit Analysis by Hayt and Kimmarle, TMH

REFERENCES:

- 1. Network lines and Fields by John. D. Ryder 2nd edition, Asia publishing house.
- 2. Basic Circuit Analysis by DR Cunninghan, Jaico Publishers.
- 3. Network Analysis and Filter Design by Chadha, Umesh Publications.

COURSE OBJECTIVES:

- 1. To understand the basic concepts on RLC circuits.
- 2. To know the behavior of the steady states and transients states in RLC circuits.
- 3. To know the basic Laplace transforms techniques in periods' waveforms.
- 4. To understand the two port network parameters.
- 5. To understand the properties of LC networks and filters.

COUSE OUTCOME:

- 1. gain the knowledge on basic network elements.
- 2. will analyze the RLC circuits behavior in detailed.
- 3. analyze the performance of periodic waveforms.
- 4. gain the knowledge in characteristics of two port network parameters (Z, Y, ABCD, h & g).
- 5. analyze the filter design concepts in real world applications.

II Veen I Semester	L	Т	Р	С
II Year - I Semester	4	0	0	3

RANDOM VARIABLES & STOCHASTIC PROCESSES

OBJECTIVES:

- To give students an introduction to elementary probability theory, in preparation for courses on statistical analysis, random variables and stochastic processes.
- To mathematically model the random phenomena with the help of probability theory concepts.
- To introduce the important concepts of random variables and stochastic processes.
- To analyze the LTI systems with stationary random process as input.
- To introduce the types of noise and modelling noise sources.

UNIT I

THE RANDOM VARIABLE : Introduction, Review of Probability Theory, Definition of a Random Variable, Conditions for a Function to be a Random Variable, Discrete, Continuous and Mixed Random Variables, Distribution and Density functions, Properties, Binomial, Poisson, Uniform, Gaussian, Exponential, Rayleigh, Conditional Distribution, Conditional Density, Properties.

UNIT II

OPERATION ON ONE RANDOM VARIABLE – EXPECTATIONS : Introduction, Expected Value of a Random Variable, Function of a Random Variable, Moments about the Origin, Central Moments, Variance and Skew, Chebychev's Inequality, Characteristic Function, Moment Generating Function, Transformations of a Random Variable: Monotonic Transformations for a Continuous Random Variable, Nonmonotonic Transformations of Continuous Random Variable.

UNIT III

MULTIPLE RANDOM VARIABLES: Vector Random Variables, Joint Distribution Function, Properties of Joint Distribution, Marginal Distribution Functions, Conditional Distribution and Density, Statistical Independence, Sum of Two Random Variables, Sum of Several Random Variables, Central Limit Theorem: Unequal Distribution, Equal Distributions.

OPERATIONS ON MULTIPLE RANDOM VARIABLES: Joint Moments about the Origin, Joint Central Moments, Joint Characteristic Functions, Jointly Gaussian Random Variables: Two Random Variables case, N Random Variables case, Properties, Transformations of Multiple Random Variables, Linear Transformations of Gaussian Random Variables.

UNIT IV

RANDOM PROCESSES – TEMPORAL CHARACTERISTICS: The Random Process Concept, Classification of Processes, Deterministic and Nondeterministic Processes, Distribution and Density Functions, Concept of Stationarity and Statistical Independence. First-Order Stationary Processes, Second-order and Wide-Sense Stationarity, Nth-order and Strict-Sense Stationarity, Time Averages and Ergodicity, Autocorrelation Function and its Properties, Cross-Correlation Function and its Properties, Covariance Functions, Gaussian Random Processes, Poisson Random Process.

UNIT V

RANDOM PROCESSES – SPECTRAL CHARACTERISTICS: The Power Density Spectrum: Properties, Relationship between Power Density Spectrum and Autocorrelation Function, The Cross-Power Density Spectrum, Properties, Relationship between Cross-Power Density Spectrum and Cross-Correlation Function.

UNIT VI

LINEAR SYSTEMS WITH RANDOM INPUTS : Random Signal Response of Linear Systems: System Response – Convolution, Mean and Mean-squared Value of System Response, Autocorrelation Function of Response, Cross-Correlation Functions of Input and Output, Spectral Characteristics of System Response: Power Density Spectrum of Response, Cross-Power Density Spectra of Input and Output, Band pass, Band-Limited and Narrowband Processes, Properties, Modeling of Noise Sources: Resistive (Thermal) Noise Source, Arbitrary Noise Sources, Effective Noise Temperature, Average Noise Figure, Average Noise Figure of cascaded networks.

TEXT BOOKS:

- 1. Probability, Random Variables & Random Signal Principles, Peyton Z. Peebles, TMH, 4th Edition, 2001.
- 2. Probability, Random Variables and Stochastic Processes, Athanasios Papoulis and S.Unnikrisha, PHI, 4th Edition, 2002.

REFERENCE BOOKS:

- 1. Probability Theory and Stochastic Processes B. Prabhakara Rao, BS Publications
- 2. Probability and Random Processes with Applications to Signal Processing, Henry Stark and John W. Woods, Pearson Education, 3rd Edition.
- 3. Schaum's Outline of Probability, Random Variables, and Random Processes.
- 4. An Introduction to Random Signals and Communication Theory, B.P. Lathi, International Textbook, 1968.
- 5. Random Process Ludeman, John Wiley
- 6. Probability Theory and Random Processes, P. Ramesh Babu, McGrawHill, 2015.

OUTCOMES:

After completion of the course, the student will be able to

- Mathematically model the random phenomena and solve simple probabilistic problems.
- Identify different types of random variables and compute statistical averages of these random variables.
- Characterize the random processes in the time and frequency domains.
- Analyze the LTI systems with random inputs.
- Apply these techniques to analyze the systems in the presence of different types of noise.

II Voor I Somestor	L	Т	Р	С
11 Teal - I Semester	4	0	0	3
MANAGERIAL ECONOMICS AND FINANCIAL	ANALY	SIS		

(Common to all Branches)

• Course Objectives:

- The Learning objectives of this paper is to understand the concept and nature of Managerial Economics and its relationship with other disciplines and also to understand the Concept of Demand and Demand forecasting, Production function, Input Output relationship, Cost-Output relationship and Cost-Volume-Profit Analysis.
- To understand the nature of markets, Methods of Pricing in the different market structures and to know the different forms of Business organization and the concept of Business Cycles.
- To learn different Accounting Systems, preparation of Financial Statement and uses of different tools for performance evaluation. Finally, it is also to understand the concept of Capital, Capital Budgeting and the techniques used to evaluate Capital Budgeting proposals.

UNIT-I

Introduction to Managerial Economics and demand Analysis:

Definition of Managerial Economics –Scope of Managerial Economics and its relationship with other subjects – Concept of Demand, Types of Demand, Determinants of Demand- Demand schedule, Demand curve, Law of Demand and its limitations- Elasticity of Demand, Types of Elasticity of Demand and Measurement- Demand forecasting and Methods of forecasting..

UNIT – II

Production and Cost Analyses:

Concept of Production function- Cobb-Douglas Production function- Leontief production function - Law of Variable proportions-Isoquants and Isocosts and choice of least cost factor combination-Concepts of Returns to scale and Economies of scale-Different cost concepts: opportunity costs, explicit and implicit costs- Fixed costs, Variable Costs and Total costs –Cost –Volume-Profit analysis-Determination of Breakeven point(simple problems)-Managerial significance and limitations of Breakeven point.

UNIT – III

Introduction to Markets, Theories of the Firm & Pricing Policies:

Market Structures: Perfect Competition, Monopoly, Monopolistic competition and Oligopoly – Features – Price and Output Determination – Managerial Theories of firm: Marris and Williamson's models – other Methods of Pricing: Average cost pricing, Limit Pricing, Market Skimming Pricing, Internet Pricing: Flat Rate Pricing, Usage sensitive pricing and Priority Pricing.

UNIT – IV

Types of Business Organization and Business Cycles:

Features and Evaluation of Sole Trader, Partnership, Joint Stock Company – State/Public Enterprises and their forms – Business Cycles : Meaning and Features – Phases of Business Cycle.

UNIT – V

Introduction to Accounting & Financing Analysis:

Introduction to Double Entry Systems – Preparation of Financial Statements-Analysis and Interpretation of Financial Statements-Ratio Analysis – Preparation of Funds flow and cash flow statements (Simple Problems)

UNIT – VI

Capital and Capital Budgeting: Capital Budgeting: Meaning of Capital-Capitalization-Meaning of Capital Budgeting-Time value of money- Methods of appraising Project profitability: Traditional Methods(pay back period, accounting rate of return) and modern methods(Discounted cash flow method, Net Present Value method, Internal Rate of Return Method and Profitability Index)

Course Outcome:

- *The Learner is equipped with the knowledge of estimating the Demand and demand elasticities for a product and the knowledge of understanding of the Input-Output-Cost relationships and estimation of the least cost combination of inputs.
- * One is also ready to understand the nature of different markets and Price Output determination under various market conditions and also to have the knowledge of different Business Units.
- *The Learner is able to prepare Financial Statements and the usage of various Accounting tools for Analysis and to evaluate various investment project proposals with the help of capital budgeting techniques for decision making.

TEXT BOOKS

- 1. Dr. N. AppaRao, Dr. P. Vijay Kumar: 'Managerial Economics and Financial Analysis', Cengage Publications, New Delhi 2011
- 2. Dr. A. R. Aryasri Managerial Economics and Financial Analysis, TMH 2011
- 3. Prof. J.V.Prabhakararao, Prof. P. Venkatarao. 'Managerial Economics and Financial Analysis', Ravindra Publication.

REFERENCES:

- 1. Dr. B. Kuberudu and Dr. T. V. Ramana: Managerial Economics & Financial Analysis, Himalaya Publishing House, 2014.
- 2. V. Maheswari: Managerial Economics, Sultan Chand.2014
- 3. Suma Damodaran: Managerial Economics, Oxford 2011.
- 4. VanithaAgarwal: Managerial Economics, Pearson Publications 2011.
- 5. Sanjay Dhameja: Financial Accounting for Managers, Pearson.
- 6. Maheswari: Financial Accounting, Vikas Publications.
- 7. S. A. Siddiqui& A. S. Siddiqui: Managerial Economics and Financial Analysis, New Age International Publishers, 2012
- 8. Ramesh Singh, Indian Economy, 7th Edn., TMH2015
- 9. Pankaj Tandon A Text Book of Microeconomic Theory, Sage Publishers, 2015
- 10. Shailaja Gajjala and Usha Munipalle, Univerties press, 2015

II Voor I Somostor	L	Т	Р	С
n rear - i Semester	0	0	3	2

ELECTRONIC DEVICES AND CIRCUITS LAB

Note: The students are required to perform the experiment to obtain the V-I characteristics and to determine the relevant parameters from the obtained graphs.

Electronic Workshop Practice:

- 1. Identification, Specifications, Testing of R, L, C Components (Colour Codes), Potentiometers, Coils, Gang Condensers, Relays, Bread Boards.
- 2. Identification, Specifications and Testing of active devices, Diodes, BJTs, JFETs, LEDs, LCDs, SCR, UJT.
- 3. Soldering Practice- Simple circuits using active and passive components.
- 4. Study and operation of Ammeters, Voltmeters, Transformers, Analog and Digital Multimeter, Function Generator, Regulated Power Supply and CRO..

List of Experiments: (Minimum of Ten Experiments has to be performed)

1. P-N Junction Diode Characteristics

Part A: Germanium Diode (Forward bias& Reverse bias)

Part B: Silicon Diode (Forward Bias only)

2. Zener Diode Characteristics

Part A: V-I Characteristics

Part B: Zener Diode as Voltage Regulator

3. Rectifiers (without and with c-filter)

Part A: Half-wave Rectifier

Part B: Full-wave Rectifier

4. BJT Characteristics(CE Configuration)

Part A: Input Characteristics

- Part B: Output Characteristics
- 5. FET Characteristics(CS Configuration)
 - Part A: Drain Characteristics

Part B: Transfer Characteristics

- 6. SCR Characteristics
- 7. UJT Characteristics
- 8. Transistor Biasing
- 9. CRO Operation and its Measurements
- 10. BJT-CE Amplifier
- 11. Emitter Follower-CC Amplifier
- 12. FET-CS Amplifier

Equipment required:

- **Regulated Power supplies** 1.
- Analog/Digital Storage Oscilloscopes Analog/Digital Function Generators 2.
- 3.
- Digital Multimeters 4.
- 5. Decade Résistance Boxes/Rheostats
- Decade Capacitance Boxes 6.
- Ammeters (Analog or Digital) 7.
- Voltmeters (Analog or Digital) 8.
- Active & Passive Electronic Components 9.

H Voon I Comoston	L	Т	Р	С
11 Tear - I Semester	0	0	3	2
NETWORKS & ELECTRICAL TECHNO	LOGY LAB			

Learning Objectives:

- To determine resonance frequency, Q-factor of RLC network.
- To analysis time response of first orders RC/RL network for non-sinusoidal inputs.
- To estimate parameters of two port networks
- To understand the concept network theorems in network reduction of electrical networks.
- To determine efficiency of dc shunt machine with actual loading.
- To analyse performance of 3 phase induction motor
- To understand the significance of regulation of an alternators through synchronous impedance method.

PART – A

Any five experiments are to be conducted from each part

- 1. Series and Parallel Resonance Timing, Resonant frequency, Bandwidth and Q-factor determination for RLC network.
- 2. Time response of first order RC/RL network for periodic non-sinusoidal inputs time constant and steady state error determination.
- 3. Two port network parameters Z-Y Parameters, chain matrix and analytical verification.
- 4. Verification of Superposition and Reciprocity theorems.
- 5. Verification of maximum power transfer theorem. Verification on DC, verification on AC with Resistive and Reactive loads.
- 6. Experimental determination of Thevenin's and Norton's equivalent circuits and verification by direct test.

PART – B

- 1. Magnetization characteristics of D.C. Shunt generator. Determination of critical field resistance.
- 2. Speed control of D.C. Shunt motor by Armature & flux control methods
- 3. Brake test on DC shunt motor. Determination of performance characteristics.
- 4. OC & SC tests on Single-phase transformer (Predetermination of efficiency and regulation at given power factors and determination of equivalent circuit).
- 5. Brake test on 3-phase Induction motor (performance characteristics).
- 6. Regulation of alternator by synchronous impedance method

Learning Outcomes:

- Able to analyse RLC circuits and understand resonant frequency and Q-factor.
- Able to determine first order RC/RL networks of periodic non- sinusoidal waveforms.
- Able to apply network theorems to analyze the electrical network.
- Able to describe the performance of dc shunt machine.
- Able to investigate the performance of 1-phase transformer.
- Able to perform tests on 3-phase induction motor and alternator to determine their performance characteristic