

II Semester

S. No.	Course Type/Co de	Name of the Subject	Teaching Scheme		Credits	
			L	Т	Р	
1	Core 3	Image and Video Processing	3	0	0	3
2	Core 4	Wireless Communications and Networks	3	0	0	3
3	Prog. Specific Elective Prog. Specific Elective	Elective III a. CMOS Analog & Digital IC Design b. Advanced Computer Architecture c. Soft Computing Techniques Elective IV a. DSP Processors and Architectures b. EMI/ EMC c. Object Oriented Programming	3	0	0	3
5	Lab 1	Advanced Communications Laboratory	0	0	4	2
6	Lab2	Advanced digital Image & video processing 0 0 4		2		
7		Mini Project	0	0	4	2
8	Aud 2	Audit Course 2	2	0	0	0
		Total Credits	14	0	12	18

I Year II Semester

L T P C 3 0 0 3

IMAGE AND VIDEO PROCESSING

Course objectives :

• The basic concepts and methods to develop foundation in digital image processing and video processing are introduced and The Importance of various image transforms, image transform properties are discussed.

. • Understanding the image enhancement techniques in both spatial domain and frequency domain.

• The process of recovering image that has been degraded by noise or any other degradation phenomenon.

• Understanding the importance of image segmentation and various methods used forsegmentation, The importance of reducing the data for digital image representation by using various image compression techniques

. • To understand the importance of video processing in multimedia and the various video formation models, motion estimation techniques in video processing

• Applications of motion estimation in video processing

UNIT –I:

Fundamentals of Image Processing and Image Transforms:

Introduction, Image sampling, Quantization, Resolution, Image file formats, Elements of image processing system, Applications of Digital image processing

Introduction, Need for transform, image transforms, Fourier transform, 2 D Discrete Fourier transform and its transforms, Importance of phase, Walsh transform, Hadamard transform, Haar transform, slant transform Discrete cosine transform, KL transform, singular value decomposition, Radon transform, comparison of different image transforms.

UNIT –II:

Image Enhancement:

Spatial domain methods: Histogram processing, Fundamentals of Spatial filtering, Smoothingspatial filters, Sharpening spatial filters.

Frequency domain methods: Basics of filtering in frequency domain, image smoothing, image sharpening, Selective filtering.

Image Restoration:

Introduction to Image restoration, Image degradation, Types of image blur, Classification of image restoration techniques, Image restoration model, Linear and Nonlinear image restoration techniques, Blind deconvolution

UNIT –III:

Image Segmentation:

Introduction to image segmentation, Point, Line and Edge Detection, Region based segmentation., Classification of segmentation techniques, Region approach to image segmentation, clustering techniques, Image segmentation based on thresholding, Edge based segmentation, Edge detection and linking, Hough transform, Active contour

Image Compression:

Introduction, Need for image compression, Redundancy in images, Classification of redundancy in images, image compression scheme, Classification of image compression schemes, Fundamentals of information theory, Run length coding, Shannon – Fano coding, Huffman coding, Arithmetic coding, Predictive coding, Transformed based compression, Image compression standard, Wavelet-based image compression, JPEG Standards.

UNIT -IV:

Basic Steps of Video Processing:

Analog Video, Digital Video. Time-Varying Image Formation models: Three-Dimensional Motion Models, Geometric Image Formation, Photometric Image Formation, Sampling of Video signals, Filtering operations.

UNIT –V:

2-D Motion Estimation:

Optical flow, General Methodologies, Pixel Based Motion Estimation, Block- MatchingAlgorithm, Mesh based Motion Estimation, Global Motion Estimation, Region based MotionEstimation, Multi resolution motion estimation, Waveform based coding, Block based transform coding, Predictive coding, Application of motion estimation in Video coding.

TEXT BOOKS:

- 1. Digital Image Processing Gonzaleze and Woods, 3rd Ed., Pearson.
- 2. Video Processing and Communication Yao Wang, JoemOstermann and Ya–quin Zhang. 1st Ed., PH Int.
- 3. S.Jayaraman, S.Esakkirajan and T.VeeraKumar, "Digital Image processing, Tata McGraw Hill publishers, 2009

REFRENCE BOOKS:

- 1. Digital Image Processing and Analysis-Human and Computer Vision Application with CVIP Tools ScotteUmbaugh, 2nd Ed, CRC Press, 2011.
- 2. Digital Video Processing M. Tekalp, Prentice Hall International.
- 3. Multi dimensional Signal, Image and Video Processing and Coding John Woods, 2nd Ed, Elsevier.
- 4. Digital Image Processing with MATLAB and Labview Vipula Singh, Elsevier.
- 5. Video Demystified A Hand Book for the Digital Engineer Keith Jack, 5th Ed., Elsevier.

Course Outcomes

- 1. Know digital image, representation of digital image, importance of image resolution, applications in image processing, the advantages of representation of digital images in transform domain, application of various image transforms.
- 2. Understand and analyze the image enhancement and image degradation, image restoration techniques using spatial filters and frequency domain.
- 3. Understand and analyze the detection of point, line and edges in images, edge linking and various segmentation techniques and the redundancy in images, various image compression techniques.
- 4. Describe the video technology from analog color TV systems to digital video systems, how video signal is sampled and filtering operations in video processing.
- 5. Describe the general methodologies for 2D motion estimation, various coding used in video processing.

	L	Т	Р	С
1 Year 11 Semester	3	0	0	3

WIRELESS COMMUNICATIONS AND NETWORKS

OBJECTIVES:

- 1. The Aim of this course is to introduce the fundamental technologies for wireless communications and networking.
- 2. It introduces the Key concepts of Cellular and Mobile communications.
- 3. Introducing the concepts of Multiple Access Schemes.
- 4. Introducing the important concepts of Wireless networking, WLAN, WLL, IEEE 802 standards.

UNIT -I:

The Cellular Concept-System Design Fundamentals:

Introduction, Frequency Reuse, Interference and system capacity – Co channel Interference and system capacity, Channel planning for Wireless Systems, Adjacent Channel interference, Power Control for Reducing interference, Improving Coverage & Capacity in Cellular Systems- Cell Splitting, Sectoring, Channel Assignment Strategies, Handoff Strategies- Prioritizing Handoffs, Practical Handoff Considerations, Trunking and Grade of Service

UNIT –II:

Mobile Radio Propagation: Large-Scale Path Loss:

Introduction to Radio Wave Propagation, Free Space Propagation Model, Relating Power to Electric Field, Basic Propagation Mechanisms, **Reflection**: Reflection from Dielectrics, Brewster Angle, Reflection from prefect conductors, Ground Reflection (Two-Ray) Model, **Diffraction**: Fresnel Zone Geometry, Knife-edge Diffraction Model, Multiple knife-edge Diffraction, Scattering, Outdoor Propagation Models-Longley-Ryce Model, Okumura Model, Hata Model, PCS Extension to Hata Model, Walfisch and Bertoni Model, Wideband PCS Microcell Model, Indoor Propagation Models- Partition losses (Same Floor), Partition losses between Floors, Log-distance path loss model, Ericsson Multiple Breakpoint Model, Attenuation Factor Model, Signal penetration into buildings, Ray Tracing and Site Specific Modeling.

UNIT –III:

Mobile Radio Propagation: Small –Scale Fading and Multipath

Small Scale Multipath propagation-Factors influencing small scale fading, Doppler shift, Impulse Response Model of a multipath channel- Relationship between Bandwidth and Received power, Small- Scale Multipath Measurements-Direct RF Pulse System, Spread Spectrum Sliding Correlator Channel Sounding, Frequency Domain Channels Sounding, Parameters of Mobile Multipath Channels-Time Dispersion Parameters, Coherence Bandwidth, Doppler Spread and Coherence Time, Types of Small- Scale Fading-Fading effects Due to Multipath Time Delay Spread, Flat fading, Frequency selective fading, Fading effects Due to Doppler Spread-Fast fading, slow fading, Statistical Models for multipath Fading Channels-Clarke"s model for flat fading, spectral shape due to Doppler spread in Clarke"s model, Simulation of Clarke and Gans Fading Model, Level crossing and fading statistics, Two-ray Rayleigh Fading Model.

UNIT -IV:

Equalization and Diversity

Introduction, Fundamentals of Equalization, Training a Generic Adaptive Equalizer, Equalizers in a communication Receiver, Linear Equalizers, Non-linear Equalization-Decision Feedback Equalization (DFE), Maximum Likelihood Sequence Estimation (MLSE) Equalizer, Algorithms for adaptive equalization-Zero Forcing Algorithm, Least Mean Square Algorithm, Recursive least squares algorithm. Diversity -Derivation of selection Diversity improvement, Derivation of Maximal Ratio Combining improvement, Practical Space Diversity Consideration-Selection Diversity, Frequency Diversity, Time Diversity, RAKE Receiver.

UNIT -V:

Wireless Networks

Introduction to wireless Networks, Advantages and disadvantages of Wireless Local Area Networks, WLAN Topologies, WLAN Standard IEEE 802.11, IEEE 802.11 Medium Access Control, Comparison of IEEE 802.11 a,b,g and n standards, IEEE 802.16 and its enhancements, Wireless PANs, HiperLan, WLL.

TEXT BOOKS:

- 1. Wireless Communications, Principles, Practice Theodore, S. Rappaport, 2nd Ed., 2002, PHI.
- 2. Wireless Communications-Andrea Goldsmith, 2005 Cambridge University Press.
- 3. Mobile Cellular Communication GottapuSasibhushanaRao, Pearson Education, 2012.

REFERENCE BOOKS:

- 1. Principles of Wireless Networks KavehPahLaven and P. Krishna Murthy, 2002, PE
- 2. Wireless Digital Communications KamiloFeher, 1999, PHI.
- 3. Wireless Communication and Networking William Stallings, 2003, PHI.
- 4. Wireless Communication UpenDalal, Oxford Univ. Press
- 5. Wireless Communications and Networking Vijay K. Gary, Elsevier.

Course Outcomes: At the end of this course, students will be able to

- 1. Understand Cellular communication concepts
- 2. Study the mobile radio propagation
- 3. Study the wireless network different type of MAC protocols

KAKINADA – 533 003, Andhra Pradesh, India

I Year II Semester

L	Т	Р	С
3	0	0	3

CMOS ANALOG AND DIGITAL IC DESIGN (ELECTIVE-III)

UNIT-I:

MOS Devices and Modeling : The MOS Transistor, Passive Components- Capacitor & Resistor, Integrated circuit Layout, CMOS Device Modeling - Simple MOS Large-Signal Model, Other Model Parameters, Small-Signal Model for the MOS Transistor, Computer Simulation Models, Sub-threshold MOS Model. **MOS Design:** Pseudo NMOS Logic – Inverter, Inverter threshold voltage, Output high voltage, Output Low voltage, Gain at gate threshold voltage, Transient response, Rise time, Fall time, Pseudo NMOS logic gates, Transistor equivalency, CMOS Inverter logic.

UNIT-II:

Combinational MOS Logic Circuits:MOS logic circuits with NMOS loads, Primitive CMOS logic gates – NOR & NAND gate, Complex Logic circuits design – Realizing Boolean expressions using NMOS gates and CMOS gates , AOI and OIA gates, CMOS full adder, CMOS transmission gates, Designingwith Transmission gates.

Sequential MOS Logic Circuits:Behaviour of bistable elements, SR Latch, Clocked latch and flip flop circuits, CMOS D latch and edge triggered flip-flop.

UNIT -III:

Dynamic Logic Circuits:Basic principle, Voltage Bootstrapping, Synchronous dynamic pass transistor circuits, Dynamic CMOS transmission gate logic, High performance Dynamic CMOS circuits.

Semiconductor Memories:Types, RAM array organization, DRAM – Types, Operation, Leakage currents in DRAM cell and refresh operation, SRAM operation Leakage currents in SRAM cells, Flash Memory-NOR flash and NAND flash.

UNIT -IV:

Analog CMOS Sub-Circuits: MOS Switch, MOS Diode, MOS Active Resistor, Current Sinks and Sources, Current Mirrors-Current mirror with Beta Helper, Degeneration, Cascode current Mirror and Wilson Current Mirror, Current and Voltage References, Band gap Reference.

UNIT-V:

CMOS Amplifiers:Inverters, Differential Amplifiers, Cascode Amplifiers, Current Amplifiers, Output Amplifiers, High Gain Amplifiers Architectures.

CMOS Operational Amplifiers:Design of CMOS Op Amps, Compensation of Op Amps, Design of Two-Stage Op Amps, Power- Supply Rejection Ratio of Two-Stage Op Amps, Cascode Op Amps, Measurement Techniques of OP Amp.

TEXT BOOKS:

- 1. Digital Integrated Circuit Design Ken Martin, Oxford University Press, 2011.
- CMOS Digital Integrated Circuits Analysis and Design Sung-Mo Kang, Yusuf Leblebici, TMH, 3rd Ed., 2011.
- 3. CMOS Analog Circuit Design Philip E. Allen and Douglas R. Holberg, Oxford University Press, International Second Edition/Indian Edition, 2010.
- 4. Analysis and Design of Analog Integrated Circuits- Paul R. Gray, Paul J. Hurst, S. Lewis and R. G. Meyer, Wiley India, Fifth Edition, 2010.

REFERENCE BOOKS:

- 1. Analog Integrated Circuit Design- David A. Johns, Ken Martin, Wiley Student Edn, 2016.
- 2. Design of Analog CMOS Integrated Circuits- BehzadRazavi, TMH Edition.
- 3. CMOS: Circuit Design, Layout and Simulation- Baker, Li and Boyce, PHI.
- 4. Digital Integrated Circuits A Design Perspective, Jan M. Rabaey, Anantha Chandrakasan, BorivojeNikolic, 2nd Ed., PHI.

Course Outcomes:

- 1. Analyze, design, optimize and simulate analog and digital circuits using CMOS constrained by the designmetrics.
- 2. Connect the individual gates to form the building blocks of asystem.
- 3. Use EDA tools like Cadence, Mentor Graphics and other open source software tools like Ngspice.

I Year II Semester

L	Т	Р	С
3	0	0	3

ADVANCED COMPUTER ARCHITECTURE (ELECTIVE-III)

UNIT-I: Fundamentals of Computer Design:

Fundamentals of Computer design, Changing faces of computing and task of computer designer, Technology trends, Cost price and their trends, measuring and reporting performance, Quantitative principles of computer design, Amdahl"s law.

Instruction set principles and examples- Introduction, classifying instruction set- memory addressingtype and size of operands, Operations in the instruction set.

UNIT-II: Pipelines:

Introduction, basic RISC instruction set, Simple implementation of RISC instruction set, Classic five stage pipe lined RISC processor, Basic performance issues in pipelining, Pipeline hazards, Reducing pipeline branch penalties.

Memory Hierarchy Design:Introduction, review of ABC of cache, Cache performance, Reducing cache miss penalty, Virtual memory.

UNIT-III:

Instruction Level Parallelism (ILP)-The Hardware Approach:Instruction-Level parallelism, Dynamic scheduling, Dynamic scheduling using Tomasulo"s approach, Branch prediction, High performance instruction delivery- Hardware based speculation.

ILP Software Approach:Basic compiler level techniques, Static branch prediction, VLIW approach, Exploiting ILP, Parallelism at compile time, Cross cutting issues - Hardware verses Software.

UNIT-IV: Multi Processors and Thread Level Parallelism:

Multi Processors and Thread level Parallelism- Introduction, Characteristics of application domain, Systematic shared memory architecture, Distributed shared – Memory architecture, Synchronization.

UNIT-V: Inter Connection and Networks:

Introduction, Interconnection network media, Practical issues in interconnecting networks, Examples of inter connection, Cluster, Designing of clusters.

Intel Architecture: Intel IA-64 ILP in embedded and mobile markets Fallacies and pit falls.

TEXT BOOKS:

1. John L. Hennessy, David A. Patterson - Computer Architecture: A Quantitative Approach, 3rd Edition, an Imprint of Elsevier.

REFERENCE BOOKS:

- 1. John P. Shen and Miikko H. Lipasti -, Modern Processor Design : Fundamentals of Super Scalar Processors
- 2. Computer Architecture and Parallel Processing Kai Hwang, Faye A.Brigs., MC Graw Hill.
- 3. Advanced Computer Architecture A Design Space Approach, DezsoSima, Terence Fountain, Peter Kacsuk, Pearson Ed.

Course Outcomes: At the end of this course, students will be able to

- 1. Understand parallelism and pipelining concepts, the design aspects and challenges.
- 2. Evaluate the issues in vector and arrayprocessors.
- 3. Study and analyze the high performance scalable multithreaded and multiprocessor systems.

I Year II Semester

SOFT COMPUTING TECHNIQUES

(ELECTIVE -III)

UNIT –I: Introduction:

Approaches to intelligent control, Architecture for intelligent control, Symbolic reasoning system, Rulebased systems, the AI approach,Knowledge representation - Expert systems.

UNIT –II:

Artificial Neural Networks:

Concept of Artificial Neural Networks and its basic mathematical model, McCulloch-Pitts neuron model, simple perceptron, Adaline and Madaline, Feed-forward Multilayer Perceptron, Learning and Training the neural network, Data Processing: Scaling, Fourier transformation, principal-component analysis and wavelet transformations, Hopfield network, Self-organizing network and Recurrent network, Neural Network based controller.

UNIT –III:

Fuzzy Logic System:

Introduction to crisp sets and fuzzy sets, basic fuzzy set operation and approximate reasoning, Introduction to fuzzy logic modeling and control, Fuzzification, inferencing and defuzzification, Fuzzy knowledge and rule bases, Fuzzy modeling and control schemes for nonlinear systems, Self-organizing fuzzy logic control, Fuzzy logic control for nonlinear timedelay system.

UNIT –IV:

Genetic Algorithm:

Basic concept of Genetic algorithm and detail algorithmic steps, Adjustment of free parameters, Solution of typical control problems using genetic algorithm, Concept on some other search techniques like Tabu search and anD-colony search techniques for solving optimization problems.

UNIT –V:

Applications:

GA application to power system optimisation problem, Case studies: Identification and control of linear and nonlinear dynamic systems using MATLAB-Neural Network toolbox, Stability analysis of Neural-Network interconnection systems, Implementation of fuzzy logic controller using MATLAB fuzzy-logic toolbox, Stability analysis of fuzzy control systems.

TEXT BOOKS:

- 1. Introduction to Artificial Neural Systems Jacek.M.Zurada, Jaico Publishing House, 1999.
- 2. Neural Networks and Fuzzy Systems Kosko, B., Prentice-Hall of India Pvt. Ltd., 1994.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

REFERENCE BOOKS:

- 1. Fuzzy Sets, Uncertainty and Information Klir G.J. &Folger T.A., Prentice-Hall of India Pvt. Ltd., 1993.
- 2. Fuzzy Set Theory and Its Applications Zimmerman H.J. Kluwer Academic Publishers, 1994.
- 3. Introduction to Fuzzy Control Driankov, Hellendroon, Narosa Publishers.
- 4. Artificial Neural Networks Dr. B. Yagananarayana, 1999, PHI, New Delhi.
- 5. Elements of Artificial Neural Networks KishanMehrotra, Chelkuri K. Mohan, Sanjay Ranka, Penram International.
- 6. Artificial Neural Network –Simon Haykin, 2nd Ed., Pearson Education.
- 7. Introduction Neural Networks Using MATLAB 6.0 S.N. Shivanandam, S. Sumati, S. N. Deepa, 1/e, TMH, New Delhi.

Course Outcomes

At the end of this course the student can able to:

- 1. Understand the basic concepts of Artificial neural network systems.
- 2. Understand the McCulloch-Pitts neuron model, simple and multilayer Perception, Adeline and Madeline concepts.
- 3. Data processing, Hopfield and self-organizing network.
- 4. Difference between crisp sets to fuzzy sets, fuzzy models, fuzzification, inference,
- 5. membership functions, rule based approaches and defuzzification.
- 6. Self organizing fuzzy logic control, non linear time delay systems.
- 7. Understand the concept of Genetic Algorithm steps. Tabu, anD-colony search techniques for solving optimization problems.
- 8. GA applications to power system optimization problems, identification and control of linear and nonlinear dynamic systems using MATLAB-Neural network toolbox.
- 9. Know the application and importance stability analysis

	L	Т	Р	С
I Year II Semester	3	0	0	3

DIGITAL SIGNAL PROCESSORS AND ARCHITECTURES (ELECTIVE -IV)

Course Objectives:

- 1) To recall the digital transform techniques (Fourier and z-domain).
- 2) To introduce architectural features of programmable DSP Processors of Texas Instruments (TI"s) and Analog Devices (AD"s).
- 3) To give practical examples of DSP Processor architectures for better understanding.
- 4) To develop the programming knowledge using Instruction set of DSP Processors.
- 5) To understand interfacing techniques to memory and I/O devices.

UNIT –I:

Introduction to Digital Signal Processing:

Introduction, A Digital signal-processing system, The sampling process, Discrete time sequences. Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT), Linear time-invariant systems, Digital filters, Decimation and interpolation.

Computational Accuracy in DSP Implementations:

Number formats for signals and coefficients in DSP systems, Dynamic Range and Precision, Sources of error in DSP implementations, A/D Conversion errors, DSP Computational errors, D/A Conversion Errors, Compensating filter.

UNIT –II:

Architectures for Programmable DSP Devices:

Basic Architectural features, DSP Computational Building Blocks, Bus Architecture and Memory, Data Addressing Capabilities, Address Generation UNIT, Programmability and Program Execution, Speed Issues, Features for External interfacing.

UNIT -III:

Programmable Digital Signal Processors:

Commercial Digital signal-processing Devices, Data Addressing modes of TMS320C54XX DSPs, Data Addressing modes of TMS320C54XX Processors, Memory space of TMS320C54XX Processors, Program Control, TMS320C54XX instructions and Programming, On-Chip Peripherals, Interrupts of TMS320C54XX processors, Pipeline operation of TMS320C54XX Processors.

UNIT –IV:

Analog Devices Family of DSP Devices:

Analog Devices Family of DSP Devices – ALU and MAC block diagram, Shifter Instruction, Base Architecture of ADSP 2100, ADSP-2181 high performance Processor.

Introduction to Blackfin Processor - The Blackfin Processor, Introduction to Micro Signal Architecture, Overview of Hardware Processing Units and Register files, Address Arithmetic Unit, Control Unit, Bus Architecture and Memory, Basic Peripherals.

UNIT –V:

Interfacing Memory and I/O Peripherals to Programmable DSP Devices:

Memory space organization, External bus interfacing signals, Memory interface, Parallel I/O interface, Programmed I/O, Interrupts and I/O, Direct memory access (DMA).

TEXT BOOKS:

- 1. Digital Signal Processing Avtar Singh and S. Srinivasan, Thomson Publications, 2004.
- A Practical Approach to Digital Signal Processing K Padmanabhan, R. Vijayarajeswaran, Ananthi. S, New Age International, 2006/2009
- 3. EmbeddedSignalProcessingwiththeMicroSignalArchitecturePublisher: Woon-SengGan, Sen M. Kuo, Wiley-IEEE Press, 2007

REFERENCE BOOKS:

- 1. Digital Signal Processors, Architecture, Programming and Applications B. Venkataramani and M. Bhaskar, 2002, TMH.
- 2. Digital Signal Processing –Jonatham Stein, 2005, John Wiley.
- 3. DSP Processor Fundamentals, Architectures & Features Lapsley et al. 2000, S. Chand & Co.
- 4. Digital Signal Processing Applications Using the ADSP-2100 Family by The Applications Engineering Staff of Analog Devices, DSP Division, Edited by Amy Mar, PHI
- 5. *The Scientist and Engineer's Guide to Digital Signal Processing* by Steven W. Smith, Ph.D., California Technical Publishing, ISBN 0-9660176-3-3, 1997
- 6. *Embedded Media Processing* by David J. Katz and Rick Gentile of Analog Devices, Newnes, ISBN 0750679123, 2005

Course Outcomes:

- 1) Understand the basics concepts of Digital Signal Processing (DSP) and transforms.
- 2) To distinguish between the architectural features of General purpose processors and Programmable DSP processors.
- 3) Understand the architectures of TMS320C54xx devices.
- 4) Understand the architectures of ADSP 2100 DSP devices and Black fin Processor.
- 5) Interface various devices to DSP Processors.
- 6) Able to write simple assembly language programs using instruction set of TMS320C54xx.

L	Т	Р	С
3	0	0	3

ELECTROMAGNETIC INTERFERENCE AND ELECTROMAGNETIC COMPATIBILITY (EMI / EMC) (ELECTIVE-IV)

Course objectives:

- 1. To introduce enough knowledge regarding the Electromagnetic interference/ Electromagnetic compatibility, Its practical experiences and concerns, and various sources both the natural and Nuclear sources of EMI.
- 2. To know the practical experiences due to EMI such as mains power supply, switches and relaysetc and Analyze EM Propagation and Crosstalk
- **3.** To know various methods of the measurements radiated and conducted interference in open area test sites and in chambers.
- 4. To Learn about the various methods of minimizing the EMI.
- 5. To know the National/International EMC Standards.

UNIT -I:

Introduction, Natural and Nuclear Sources of EMI / EMC:Electromagnetic environment, History, Concepts, Practical experiences and concerns, frequency spectrum conservations, An overview of EMI / EMC, Natural and Nuclear sources of EMI.

UNIT -II:

EMI from Apparatus, Circuits and Open Area Test Sites: Electromagnetic emissions, Noise from relays and switches, Non-linearities in circuits, passive intermodulation, Cross talk in transmission lines, Transients in power supply lines, Electromagnetic interference (EMI), Open area test sites and measurements.

UNIT -III:

Radiated and Conducted Interference Measurements and ESD: Anechoic chamber, TEM cell, GH TEM Cell, Characterization of conduction currents / voltages, Conducted EM noise on power lines, Conducted EMI from equipment, Immunity to conducted EMI detectors and measurements, ESD, Electrical fast transients / bursts, Electrical surges.

UNIT -IV:

Grounding, Shielding, Bonding and EMI filters:Principles and types of grounding, Shielding and bonding, Characterization of filters, Power lines filter design.

UNIT -V:

Cables, Connectors, Components and EMC Standards:

EMI suppression cables, EMC connectors, EMC gaskets, Isolation transformers, optoisolators, National / International EMC standards.

TEXT BOOKS:

- 1. Engineering Electromagnetic Compatibility Dr. V.P. Kodali, IEEEPublication, Printed in India by S. Chand & Co. Ltd., New Delhi, 2000.
- 2. Electromagnetic Interference and Compatibility IMPACTseries, IIT Delhi, Modules 1-9

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

REFERENCE BOOKS:

1. Introduction to Electromagnetic Compatibility - Ny, John Wiley, 1992, by C.R. Pal.

Course outcomes

At the end of this course the student can able to:

- 1. Understand the electromagnetic environment the definitions of EMI and EMC, history of EMI some examples of practical experiences due to EMI such as mains power supply, switches and relays etc.
- 2. Understand the celestial electromagnetic noise the occurrence of lightning discharge and their effects, the charge accumulation and discharge in an electrostatic discharge, model ESD wave form, the various cases of nuclear explosion and the transients.
- 3. Understand the methods to measure RE and RS in the open are test sites
- **4.** Understand the measurement facilities and procedures using anechoic chamber, TEM cell, reverberating chamber GTEM cell.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

I Year II Semester

L	Т	Р	С
3	0	0	3

OBJECT ORIENTED PROGRAMMING (ELECTIVE IV)

OBJECTIVES:

The main objectives of this course are given below:

• Its main objective is to teach the basic concepts and techniques and java program structure which form the object oriented programming paradigm

UNIT I:

Objective: Focus on object oriented concepts and java program structure and its installation

Introduction to OOP

Introduction, Need of Object Oriented Programming, Principles of Object Oriented Languages, Procedural languages Vs OOP, Applications of OOP, History of JAVA, Java Virtual Machine, Java Features, Installation of JDK1.6

UNIT II:

Objective: Comprehension of java programming constructs, control structures in Java

Programming Constructs

Variables, Primitive Datatypes, Identifiers- Naming Coventions, Keywords, Literals, Operators-Binary, Unary and ternary, Expressions, Precedence rules and Associativity, Primitive Type Conversion and Casting, Flow of control-Branching, Conditional, loops.,

Classes and Objects- classes, Objects, Creating Objects, Methods, constructors-Constructor overloading, Garbage collector, Class variable and Methods-Static keyword, this keyword, Arrays, Command line arguments

UNIT III:

Objective: Implementing Object oriented constructs such as various class hierarchies, interfaces and exception handling

Inheritance: Types of Inheritance, Deriving classes using extends keyword, Method overloading, super keyword, final keyword, Abstract class

Interfaces, Packages and Enumeration: Interface-Extending interface, Interface Vs Abstract classes, Packages-Creating packages , using Packages, Access protection, java.lang package

Exceptions & Assertions - Introduction, Exception handling techniques-try...catch, throw, throws, finally block, user defined exception, Assertions

UNIT IV:

Objective: Understanding of Thread concepts and I/O in Java

MultiThreading : java.lang.Thread, The main Thread, Creation of new threads, Thread priority, Multithreading, Syncronization, suspending and Resuming threads, Communication between Threads **Input/Output:** reading and writing data, java.io package

UNIT V:

Objective: Being able to build dynamic user interfaces using applets and Event handling in java Applets-Applet class, Applet structure, An Example Applet Program, Applet Life Cycle, paint(),update() and repaint()

Event Handling -Introduction, Event Delegation Model, java.awt.event Description, Event Listeners, Adapter classes, Inner classes

Understanding of various components of Java AWT and Swing and writing code snippets using them Abstract Window Toolkit

Why AWT?, java.awt package, Components and Containers, Button, Label, Checkbox, Radio buttons, List boxes, Choice boxes, Text field and Text area, container classes, Layouts, Menu, Scroll bar **Swing:**Introduction, JFrame, JApplet, JPanel, Components in swings, Layout Managers, JList and JScroll Pane, Split Pane, JTabbedPane, Dialog Box

Text Books:

- 1. The Complete Refernce Java, 8ed, Herbert Schildt, TMH
- 2. Programming in JAVA, Sachin Malhotra, Saurabhchoudhary, Oxford.
- 3. JAVA for Beginners, 4e, Joyce Farrell, Ankit R. Bhavsar, Cengage Learning.
- 4. Object oriented programming with JAVA, Essentials and Applications, Raj Kumar Bhuyya, Selvi, Chu TMH
- 5. Introduction to Java rogramming, 7thed, Y Daniel Liang, Pearson

Reference Books:

- 1. JAVA Programming, K.Rajkumar.Pearson
- 2. Core JAVA, Black Book, NageswaraRao, Wiley, Dream Tech
- 3. Core JAVA for Beginners, RashmiKanta Das, Vikas.
- 4. Object Oriented Programming through JAVA, P Radha Krishna, University Press.

OUTCOMES:

At the end of this course the student can able to:

1. The model of object oriented programming: abstract data types, encapsulation, inheritance and polymorphism

2. Fundamental features of an object oriented language like Java: object classes and interfaces, exceptions and libraries of object collections

3. How to take the statement of a business problem and from this determine suitable logic for solving theproblem; then be able to proceed to code that logic as a program written in Java.

4. How to test, document and prepare a professional looking package for each business project using java doc.

www.android.universityupdates.in | www.universityupdates.in | www.ios.universityupdates.in JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA

KAKINADA – 533 003, Andhra Pradesh, India

L	Т	Р	C
0	0	4	2

ADVANCED COMMUNICATIONS LAB

Note:

- A. Minimum of 10 Experiments have to be conducted
- B. All Experiments may be Simulated using MATLAB and to be verified using related training kits.
 - 1. Measurement of Bit Error Rate using Binary Data
 - 2. Verification of minimum distance in Hamming code
 - 3. Determination of output of Convolutional Encoder for a given sequence
 - 4. Determination of output of Convolutional Decoder for a given sequence
 - 5. Efficiency of DS Spread- Spectrum Technique
 - 6. Simulation of Frequency Hopping (FH) system
 - 7. Effect of Sampling and Quantization of Digital Image
 - 8. Verification of Various Transforms (FT / DCT/ Walsh / Hadamard) on a given Image (Finding Transform and Inverse Transform)
 - 9. Point, Line and Edge detection techniques using derivative operators.
 - 10. Implementation of FIR filter using DSP Trainer Kit (C-Code/ Assembly code)
 - 11. Implementation of IIR filter using DSP Trainer Kit (C-Code/ Assembly code)
 - 12. Determination of Losses in Optical Fiber
 - 13. Observing the Waveforms at various test points of a mobile phone using Mobile Phone Trainer
 - 14. Study of Direct Sequence Spread Spectrum Modulation & Demodulation using CDMA-DSS-BER Trainer
 - 15. Study of ISDN Training System with Protocol Analyzer
 - 16. Characteristics of LASER Diode.

Course Outcomes:

- 1. Identify the different types of network devices and their functions within anetwork.
- 2. Understand and build the skills of sub-netting and routingmechanisms.
- 3. Understand basic protocols of computer networks, and how they can be used to assist in network design and implementation.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

I Year II Semester	
--------------------	--

L	Т	Р	С
0	0	4	2

Advanced Digital Image and Video Processing lab

List of Experiments:

- 1. Perform basic operations on images like addition, subtraction etc.
- 2. Plot the histogram of an image and perform histogram equalization
- 3. Implement segmentation algorithms
- 4. Perform video enhancement
- 5. Perform video segmentation
- 6. Perform image compression using lossy technique
- 7. Perform image compression using lossless technique
- 8. Perform image restoration
- 9. Convert a colour model into another
- 10. Calculate boundary features of an image
- 11. Calculate regional features of an image
- 12. Detect an object in an image/video using template matching/Bayes classifier

Course Outcomes:

- 1. Perform and analyze image and video enhancement and restoration
- 2. Perform and analyze image and video segmentation and compression
- 3. work and process viz., detection, extraction on the image/video

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

I Year II Semester	\mathbf{L}	Т	Р	С
	0	0	4	2

MINI PROJECT

Syllabus Contents

The students are required to search / gather the material / information on a specific a topic comprehend it and present / discuss in the class.

Course Outcomes

- 1. Understand of contemporary / emerging technology for various processes and systems.
- 2. Share knowledge effectively in oral and written form and formulate documents